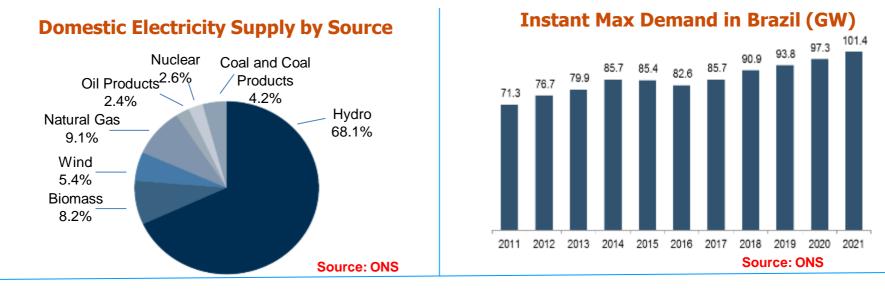


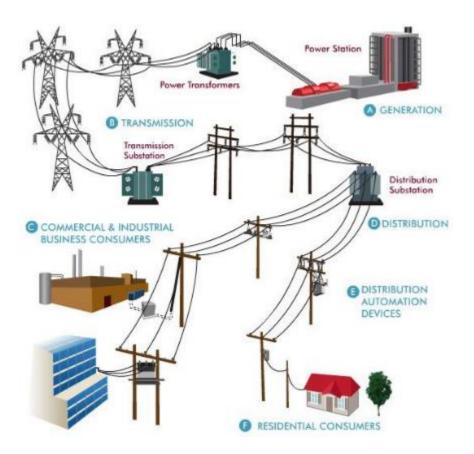
Nuclear Power Generation in Brazil



- Electricity Market in Brazil
- Eletronuclear
- Angra 3
- Nuclear Energy in Brazilian Energy Planning
- Activities for new nuclear build

Energy Matrix & Demand

- The Economy Upturn has an Important Impact on Energy Demand.
- Since Brazil has a relevant exposure to hydroelectric energy, the diversification of the sources is important.


- After the drop in demand in 2016 and 2017, the consumption of energy grew in 2018 and 2019. Due to COVID-19, a negative impact on demand shall happen in 2020. On the long term however, a continued increase following economic growth is expected.
- Considering the dependency on hydroelectric energy and its correlation with climate, new sources of energy will have more demand in the country in the next years.
- Main Alternatives: Wind / Biomass / Gas / Coal / Nuclear
- As nuclear power is stable and clean, it has excellent prospects in the medium term.

Brazilian Energy Market

In Brazil most of the Power Plants operate under PPA Contracts in

a mostly regulated Energy Generation Market.

Energy Market

Key Highlights

- Generation: The Generation market in Brazil is highly regulated with most power plants operating with PPA contracts.
- Transmission: Transmission market is also mainly regulated. Every player of the system has a contract specifying an "Annually Allowed Revenue" (*Receita Anual Permitida – RAP*) which remunerates the transmission projects.
- Distribution: Every region has a Distribution Company offering this service and all them are regulated by ANEEL (National Electric Energy Agency), regarding tariff and quality of service.
- Tariff: The tariff increases proportionally to the use of conventional thermal energy.

Eletronuclear profile

Eletronuclear is a mixed capital company controlled by Eletrobras with minority shareholders such as Light and DAEE

Eletronuclear's Corporate Structure

Comments and Analysis

- The company is a subsidiary of Eletrobras with approximately 99%
- Eletronuclear, through its NPPs, is responsible for generating about 3% of the electricity consumed in Brazil and more than 30% of the state of RJ
- The company has an asset under construction with expected COD in Jul / 2026

Assets in Operation

Angra 1

- Installed Power: 640 MW
- Power Generation (2018): 568 MWmed
- Approved Energy Price (2019): R\$ 247/ MWh

Angra 2

- Installed Power: 1,350 MW
- Generated Power (2018): 1,280 MWmed
- Approved Energy Price (2019): R\$ 247/ MWh

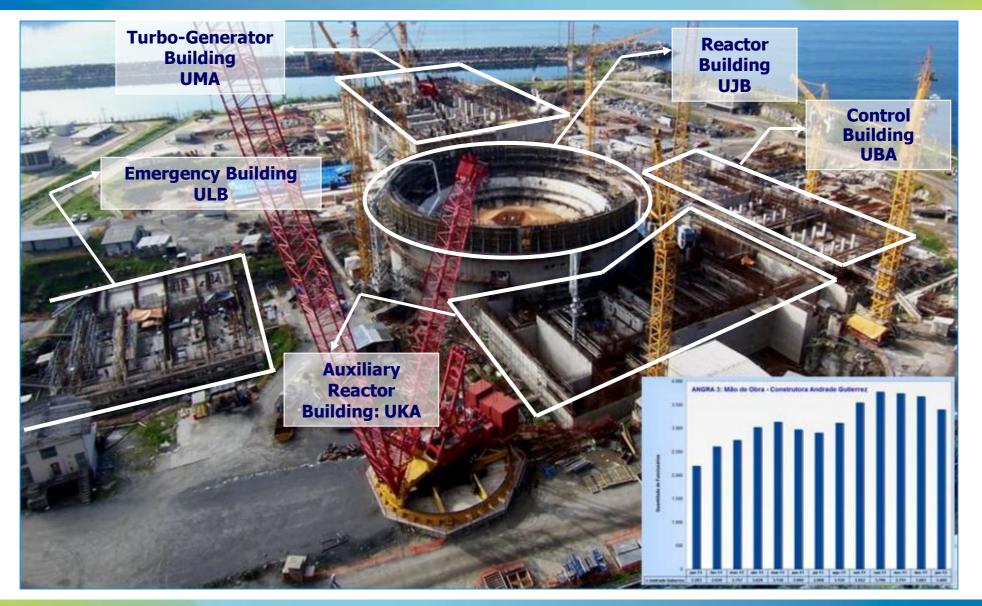
Power Plant Under Construction

Angra 3

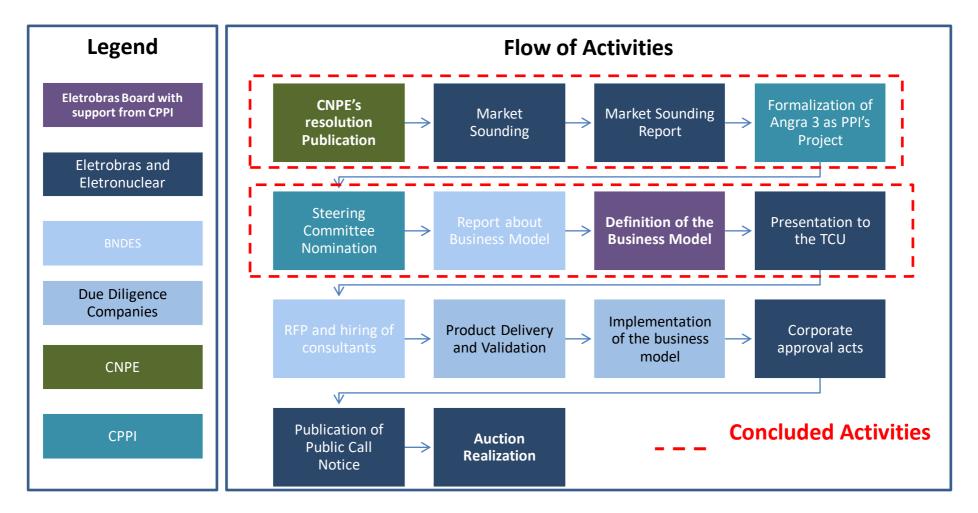
- · Installed Power: 1,405 MW
- Reference Price (2018): R\$ 480 / MWh
- Status of Civil Works: 67.1%
- Investments to be made: R\$ 14.5 Bn
- Additional period of construction: 55 months

Angra 3

Today


- Protection Systems for Civil **Structures Already Built.**
- Preservation of Components and Materials.
- Studies about the Restarting the Construction.

88,5%


Angra 3

Resuming Angra 3

It was developed with the aid of the Investment Partnerships Program a flow of activities for the resumption of Angra 3

CPPI Resolution – June 2020

RESOLUÇÃO № 139, DE 10 DE JUNHO DE 2020

Aprova o relatório do Comitê Interministerial acerca do modelo jurídico e operacional para viabilização da Usina Termonuclear Angra 3.

O CONSELHO DO PROGRAMA DE PARCERIAS DE INVESTIMENTOS, no uso das atribuições que lhe confere o artigo 7º, caput, incisos I e IV, da Lei nº 13.334, de 13 de setembro de 2016, e o artigo 3º, inciso I, do Decreto nº 9.915, de 16 de julho de 2019, e

Considerando que o Conselho Nacional de Política Energética – CNPE, por meio da Resolução nº 14, de 19 de outubro de 2018, determinou ao Ministério de Minas e Energia – MME a submissão do empreendimento Usina Termonuclear Angra 3 ao Conselho do Programa de Parcerias de Investimentos – CPPI;

Considerando a qualificação no Programa de Parcerias de Investimentos – PPI da Usina Termonuclear Angra 3, por meio do Decreto nº 9.915, de 16 de julho de 2019;

Considerando que o Banco Nacional de Desenvolvimento Econômico e Social – BNDES, com base no disposto no artigo 2º, parágrafo único, do Decreto nº 9.915/2019, realizou estudos para a definição de um modelo jurídico e operacional para a conclusão do empreendimento;

Considerando que o Comitê Interministerial produziu relatório com base nos estudos realizados pelo BNDES encaminhando o modelo jurídico e operacional, que se mostrou mais adequado, para a conclusão do empreendimento ao CPPI, nos termos do art. 4 º, § 6 º, inciso I, do Decreto 9.915/2019;

Considerando que a qualificação da Usina Termonuclear Angra 3 no PPI se deu com fulcro no disposto no artigo 4º, caput, inciso II, da Lei nº 13.334, de 26 de setembro de 2016, que prevê a qualificação de empreendimentos públicos federais de infraestrutura no

Approves the report prepared based on BNDES work

 Report defines the model for completion of Angra 3, separating the engineering and financial risks: Financial restructuring and EPC contract

The National Council for Energy PolicyCNPE, will monitor the project

 Starts Phase 2 of the contract with BNDES - implementation of the model

Eletronuclear

Angra 3 – Critical Path Accel. Plan

Motivation

An alternative solution to mantain C.O.D in nov/26.

Scope

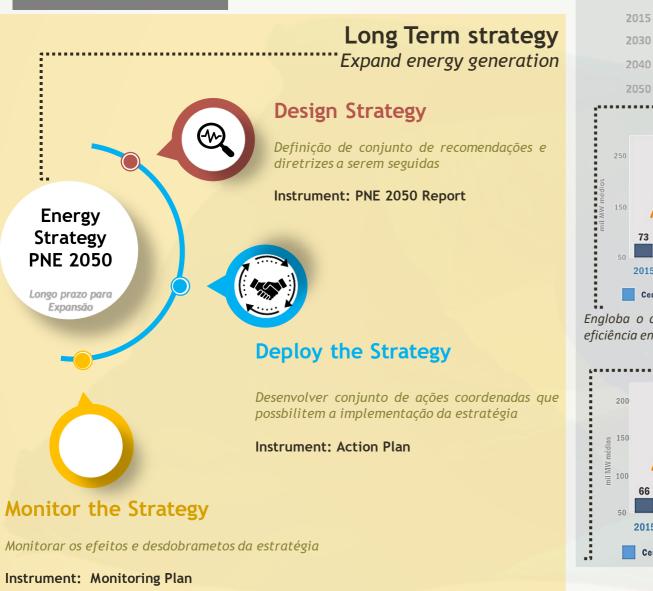
Advance civil construction and erection works, as well as mantaining critical supplies.

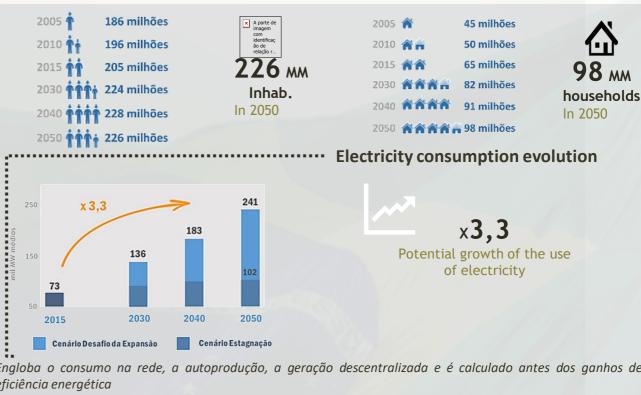
Start

<u>May 2020</u>

- → Contracting Owners Engineering and conclusion of engineering design
- \rightarrow National Supplies contract renegociations
- \rightarrow Debt and new supplies negotiations

<u>March 2021</u> \rightarrow Sign civil works ans electromechanical erection contracts.


October 2<u>021</u> \rightarrow Start of works on site



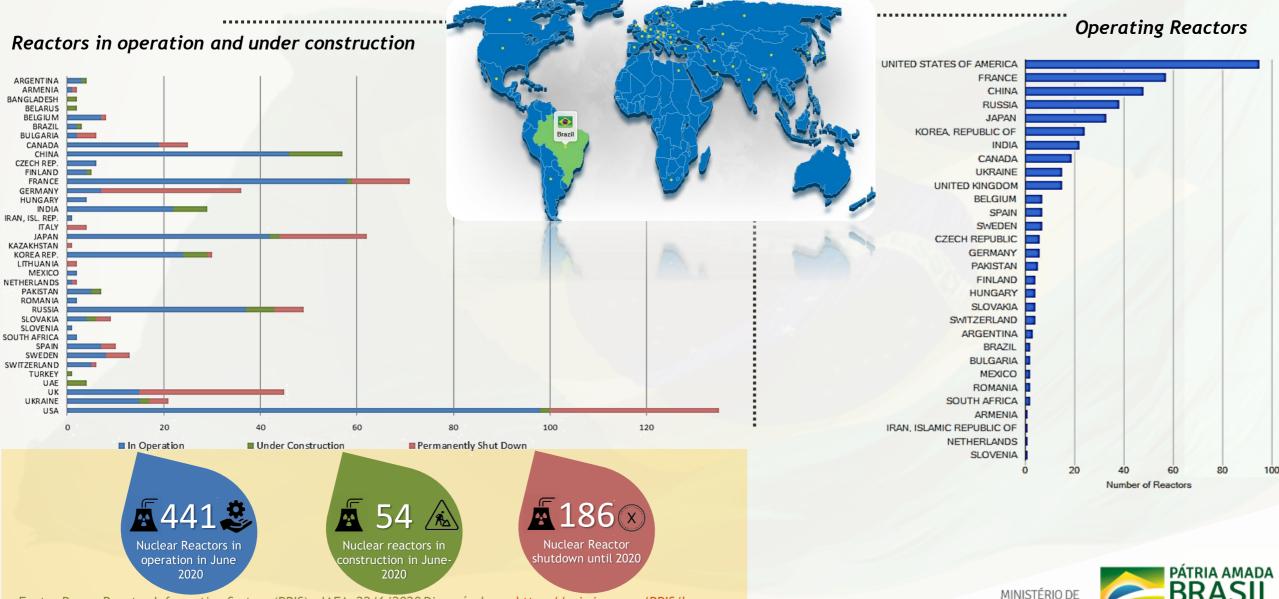

Nuclear Energy in the Brazilian National Energy Plan 2050

National Energy Plan 2050 Long Term Strategies

Engloba o consumo na rede, a autoprodução, a geração descentralizada e é calculado antes dos ganhos de eficiência energética

Electricity Demand Growth

MINISTÉRIO DE


MINAS E ENERGIA

Fonte: PNE 2050

Nuclear Energy - World Outlook - 2020

MINAS E ENERGIA

Fonte: Power Reactor Information System (PRIS) - IAEA. 22/6/2020 Disponível em: https://pris.iaea.org/PRIS/home.aspx

Secretaria de Planejamento e Desenvolvimento Energético

Nuclear Energy - Technology Perspectives

Energia Nuclear Perspectivas Tecnológicas

In the coming years (PNE 2050):

New reactor generation (III+)

First unities recently started comercial operation

Small modular reactors (SMR)

Presently in the first stages of licensing in several countries

Generation IV reactors

Still in design, no foreseable deployments in the horizon of PNE 2050

2040 A large number of plnats will reach EOL

Disruptive Technologies :

Hav epotential of substantially changing the landscape

Small Modular Reactors (SMRs)

Nuclear Fusion

Fonte: PNE 2050

Nuclear Energy - Quantitative studies - PNE 2050

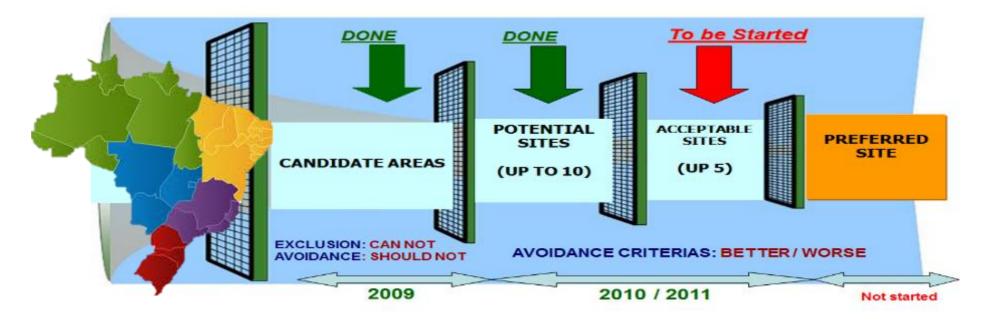
Roadmap for Nuclear Energy in Brazil

	Recomendaçõ	bes no		
Desafios do PNE 2050	Horizonte do PÑE	2050	2030-2030 2030-2040	2040-2050
Communication 1	Enhance communication with society, especially in candidate areas.			
💒 Institutional 2	Update the regulatory framework			
	Eestablish a planning methodology that takes into account the externalities of NPPs (Nuclear Policy)			
Expansion 3	Ptroject Statdardization			
	R&D and HR development			
	Sefety of nuclear waste			
Safety 4	Enhance nuclear safety			
	Fuel supply safety			
Life Extension 5	Apply for Life Extension of operating plants			
Uranium Mining 6	Resume uranium reserves assessments			
		MINISTÉRIO DE		AMADA

MINAS E ENERGIA

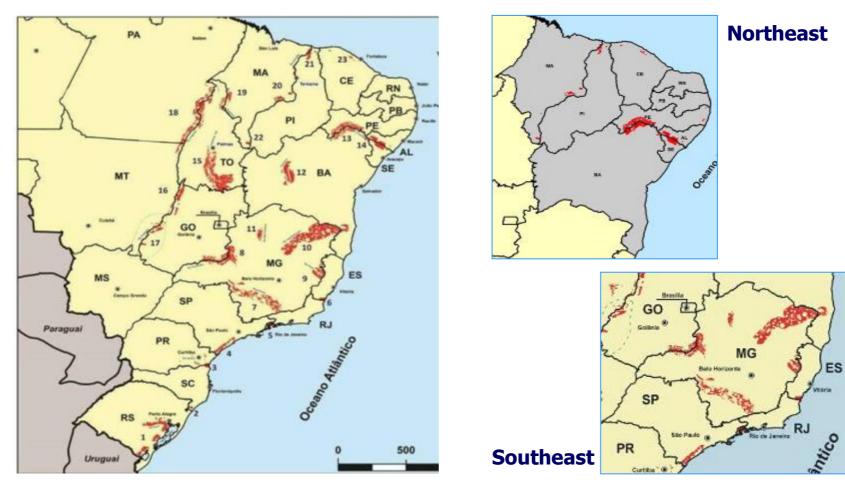
New NPPS for Brazil

General Characteristics of the New NPPs to be Constructed in Brazil


- > Technology
 - * 3rd generation NPP
- > Station Concept
 - ***** Fleet with 4 to 6 units at the same site
 - ***** Benefits of Economic Scale
- Power of each Unit (in evaluation)
 - ★ Two alternatives: ~ 1 GW / > 1 GW
- Primary Circuit (technology being evaluated)
 - ***** Acquired in the international market
- > Secondary Circuit
 - ***** Standardization of the main components
 - ***** Increase of the domestic participation

New NPPS for Brazil

National Inventory of Areas which meet the Exclusion and Avoidance Criteria for Localization of Nuclear Power Station


- > Eletronuclear
- > EPE (Energy Research Company)
- > COPPE-UFRJ (Federal University of Rio de Janeiro)
- > **GARTA** (Group for Analysis of Environmental Technologic Risk)
 - EPRI Site Selection Procedure (Similar to the IAEA Methodology) Developed from EPRI Siting Guide: Site Selection and Evaluation Criteria for an Early Site Permit Application (Siting Guide), March 2002

New NPPS for Brazil

Brazilian Atlas for New Nuclear Power Plants

Potential Sites: 40 Selected Areas / 8 Pre-selected Sites

Roadmap for New Build in Brazil

	2014	Years 1 e 2	Years 3 e 4	Year 5	
Site	Brazilian Atlas for New NPPs	Site Selection of the Site(s) to be analyzed in detail	Site Data Field Survey and Other data	ESP Early Site Permit Site Environmental	
	R F I Request for	PPE Plant Parameter Envelope	Licenses Applications	and Nuclear Licensing regardless of Technology	
n o l o g y	InformationData Request as IAEA and NEI guidesAdditional Data Detailing Technology Offered	Technology Qualification Data Analysis and Specifications or the Proposed Reactors Requirements set to be met by Technology Provider		PPA Power Purchase Agreement	
Tec	Feasibility Studies	BUR Brazilian Utility Requirements	Commercial Model	BID	

Eletrobras Eletronuclear

Disclaimer

Esta apresentação pode conter estimativas e projeções que não são declarações de fatos corridos no passado mas refletem crenças e expectativas de nossa administração e podem constituir estimativas e projeções sobre eventos futuros de acordo com Seção 27A do Securities Act de 1933, conforme alterado, e Seção 21E do Securities and Exchange Act de 1934, conforme alterado.

As palavras "acredita", "poderá", "pode", "estima", "continua", "antecipa", "pretende", "espera" e similares têm por objetivo identificar estimativas que necessariamente envolvem riscos e incertezas, conhecidos ou não.

Riscos e incertezas conhecidos incluem, mas não se limitam a: condições econômicas, regulatórias, políticas e comerciais gerais no Brasil e no exterior, variações nas taxas de juros, inflação e valor do Real, mudanças nos volumes e padrão de uso de energia elétrica pelo consumidor, condições competitivas, nosso nível de endividamento, a possibilidade de recebermos pagamentos relacionados a nossos recebíveis, mudanças nos níveis de chuvas e de água nos reservatórios usados para operar nossas hidrelétricas, nossos planos de financiamento e investimento de capital, regulamentações governamentais existentes e futuras, e outros riscos descritos em nosso relatório anual e

Estimativas e projeções referem-se apenas à data em que foram expressas e não assumimos nenhuma obrigação de atualizar quaisquer dessas estimativas ou

outros documentos registrados

perante CVM e SEC.

projeções em razão da ocorrência de nova informação ou eventos futuros. Os resultados futuros das operações e iniciativas das Companhias podem diferir das expectativas atuais e o investidor não deve se basear exclusivamente nas informações aqui contidas.

Este material contém cálculos que podem não refletir resultados precisos devido a arredondamentos realizados.

MARCELO GOMES DA SILVA

ELETRONUCLEAR New Business Development Department mgomes@eletronuclear.gov.br